Designing with Delails

, . Dan Saffer
O REILLY Foreword by Don Norman

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It's also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

O’REILLY

Spreading the knowledge of innovators oreilly.com

http://www.android.com/market/
http://amazon.com
http://www.oreilly.com
http://shop.oreilly.com/product/0636920027676.do

Microinteractions
by Dan Saffer

Copyright © 2013 Dan Saffer. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler Indexer: Angela Howard
Production Editor: Rachel Steely Cover Designer: Randy Comer
Copyeditor: Kiel Van Horn Interior Designer: David Futato
Proofreader: Rebecca Freed lllustrator: Rebecca Demarest
May 2013: First Edition

Revision History for the First Edition:

2013-04-25: First release
See http://oreilly.com/catalog/errata.csp?isbn=9781449342685 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Microinteractions, the image of an English sparrow and a tree sparrow, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-34268-5
[LSI]

Foreword
Preface

1.

Table of Contents

Designing Microinteractions............coovvviiiiieiieeneennennnns

Microinteractions Are Not Features ... But Still Matter
Microinteractions Can Be Big

The Secret History of Microinteractions

The Structure of Microinteractions

Microinteractions as a Philosophy

Summary

1oL 7

Manual Triggers

Bring the Data Forward

The Components of a Trigger
System Triggers

System Trigger Rules
Summary

Designing Rules
Generating Rules
Verbs and Nouns
Screens and States
Constraints
Don'’t Start from Zero
Absorb Complexity
Limited Options and Smart Defaults
Controls and User Input

oo

23
26
27
28
43
46
48

49
52
56
59
61
62
64
67
69
72

Preventing Errors 74

Microcopy 76
Algorithms 78
Summary 81

4. Feedback......oooiniiiii 83
Feedback Illuminates the Rules 86
Feedback Is for Humans 90

Less Is More 92
Feedback as a Personality-Delivery Mechanism 93
Feedback Methods 96
Visual 96
Audio 101
Haptics 104
Feedback Rules 106
Summary 107

5. Loopsand Modes.ovuiiiiiiiii ittt i it aas 109
Modes 111
Spring-Loaded and One-off Modes 113
Loops 114
Styles of Loops 114
Long Loops 117
Summary 121

6. PuttingltAllTogether........ccoiiiniiiii i i 123
Example 1: Mobile App 126
Example 2: Online Shared Playlist 129
Example 3: Dishwasher Control Panel 132
Prototyping and Documenting Microinteractions 135
Orchestrating Microinteractions 137
Turning Microinteractions into Features 137
How to Fix a Dull Microinteraction 139
Think Small 140

A. Testing Microinteractions.coveuiiiiiuiiiniiiiiiieiieniennreneennens 141
INAEX. ..ttt 147

iv | Tableof Contents

CHAPTER 1
Designing Microinteractions

“Nothing big works.”
— Victor Papanek

The furious shouting started after the conductor stopped the performance. The New
York Philharmonic had reached the very end of the slow, quiet Adagio movement that
finishes Mahler’s Symphony no. 9. The audience, many of whom had paid hundreds of
dollars for this privilege, sat attentive and rapt, listening to the still, sublime moments
that resolve over an hour of music.

And then it happened: from the front row, the unmistakable sound of an iPhone’s
“Marimba” sound—that high-pitched xylophone tinkle—going off over and over again.
An alarm. It kept going. And going. The conductor, Alan Gilbert, halted the orchestra.
But the alarm kept going off. By now, audience members were yelling at the phone’s
owner, an older executive the Philharmonic later dubbed “Patron X,” a long-time sym-
phony patron. Avery Fisher Hall, which just moments before had been unearthly calm
and quiet, had erupted in chaos and anger.

As the New York Times reported in January 2012,' Patron X had just gotten the iPhone
the day before; his company had replaced his Blackberry for it. Before the performance
began, he had flipped the mute switch, turning silent mode on. But what he didn’t know
was that one of the iPhone’s rules was that alarms still go off even when the phone is
silenced. So when the alarm went off, he didn’t even realize it was his phone for an
excruciatingly long time. By the time he knew it was his phone and had turned the alarm
off, it was too late: the performance was ruined.

The next day, as news spread, the Internet exploded with vitriol and wisecracks. Com-
poser Daniel Dorff tweeted, “Changed my ringtone to play #Mahler 9 just in case”

1. Daniel J. Wakin, “Ringing Finally Ended, but There’s No Button to Stop Shame.” The New York Times, January
12, 2012.

Arguments and discussions spanned across blogs, with some advocating that turning
the ringer off should turn every sound off. In his January 2012 Article “Daring Fireball:
On the Behavior of the iPhone Mute Switch” tech columnist Andy Ihnatko wrote, “My
philosophy is ‘Its much better to be upset with yourself for having done something
stupid than to be upset with a device that made the wrong decision on its own
initiative.””

While others made the (in my opinion, correct) case that alarms still need to sound even
when the ringer is turned off. As Apple pundit John Gruber pointed out, “If the mute
switch silenced everything, there’d be thousands of people oversleeping every single day
because they went to bed the night before unaware that the phone was still in silent
mode”

Apple’s own iOS Human Interface Guidelines gives its rationale for why muting the
phone works the way it does:

For example, in a theater users switch their devices to silent to avoid bothering other
people in the theater. In this situation, users still want to be able to use apps on their
devices, but they don’t want to be surprised by sounds they don’t expect or explicitly
request, such as ringtones or new message sounds.

The Ring/Silent (or Silent) switch does not silence sounds that result from user actions
that are solely and explicitly intended to produce sound.

In other words, muting the phone does not silence the sounds that users have specifically
asked for, only those they have not (e.g., text messages, incoming phone calls). This is
the rule. Like many rules, it’s hidden, and it's compounded by the fact that other than
the tiny orange mark on the switch, there is no onscreen indicator that the ringer is off.
If Apple was to change to a different rule—that the silent switch silences everything—
other rules and feedback would have to be designed. Would the phone vibrate when an
alarm went oft? Would there be some persistent indicator that the phone was in silent
mode, either onscreen when you woke up the phone or a small LED indicator in the
hardware? There are many different ways silencing a phone could be designed.

Silencing a phone is an example of a microinteraction. A microinteraction is a contained
product moment that revolves around a single use case—a tiny piece of functionality
that only does one thing (see Figure 1-1 for an example). Microinteractions can power
an entire app or device, or (more often) exist alongside or inside a larger product. They
are the small moments that can be dull and forgettable, or pleasurable and engaging.
Every time you change a setting, sync your data or devices, set an alarm, pick a password,
turn on an appliance, log in, set a status message, or favorite or Like something, you are
engaging with a microinteraction. They are everywhere: in the devices we carry, the
appliances in our house, the apps on our phones and desktops, even embedded in the
environments we live and work in.

2 | Chapter 1: Designing Microinteractions

: Before we post this, who are you? =
b
A Guest Your email
id
3 Disqus ‘ ‘
B Google Your name
ca .
icd B/ Twitter
Optional:
] Facebook pene
[Subscribe to all comments by email
11y Yahoo
E Post comment
25| (dY OpeniD
=H
“pe DISG
via

Figure 1-1. An example of a common microinteraction: signup. The Disqus sign-up
form cleverly guesses your name based on your email address. (Courtesy Jakob Skjern-
ing and Little Big Details.)

Microinteractions are the functional, interactive details of a product, and details, as
Charles Eames famously said,” aren’t just the details; they are the design. Details can
make engaging with the product easier, more pleasurable—even if we don't consciously
remember them. Some microinteractions are practically or literally invisible, and few
are the reason that you buy a product; instead, they are usually pieces of features, or the
supporting or so-called “hygiene” functionality. For example, no one buys a mobile
phone for the ability to turn the ringer off, but it’s expected, and, as we've seen, that
microinteraction can create all sorts of experiences—for good and bad. Some micro-
interactions can be frustrating, some dull and forgotten, while the best are engaging and
clever. It’s this last that this book will provide the tools to design.

The case of Patron X is one of the few examples of a microinteraction making news.
Even though we’re surrounded by microinteractions every day, we don’t usually notice
them until something goes horribly wrong, as it did for Patron X. But microinteractions
are, despite their small size and near-invisibility, incredibly important. The difference
between a product you love and a product you tolerate is often the microinteractions
you have with it. They can make our lives easier, more fun, and just more interesting if
done well. That’s what this book is all about: how to design microinteractions well.

2. See 100 Quotes by Charles Eames, Charles Eames (Eames Office, 2007).

Designing Microinteractions | 3

This chapter will teach you how to distinguish microinteractions from features,
and gives a brief history of microinteractions. Then, we’ll dive into the structure of
microinteractions, which also forms the structure of the rest of the book. The micro-
interactions model will provide a means of discussing and dissecting every piece of a
microinteraction so that you can design or improve your own microinteractions. Finally,
we’ll talk about how to incorporate microinteractions into your process.

Microinteractions Are Not Features ... But Still Matter

The combination of well-designed micro- and macro- (feature) interactions is a pow-
erful one. This is what experience design truly is: paying attention to the details as well
as the big picture so that users have a great experience using the product (see Figure 1-2).

Password [| 6 characters or more (be tricky!)
Password [.o Too short

Password [ssssse Too obvious

Password [esecccccce W Weak

Password [esesssssenee ' Good

Password [SRS NERIRERRERS ' Strong

Password [-ooooo-----oooooo---| ' Very Strong

Figure 1-2. Twitter’s password-selection form is a great variation on a common micro-
interaction (picking a password), with very clear feedback. (Courtesy Little Big Details.)

4 | Chapter 1: Designing Microinteractions

Microinteractions differ from features in both their size and scope. Features tend to be
complex (multiuse case), time consuming, and cognitively engaging. Microinteractions
on the other hand are simple, brief, and should be nearly effortless (see Figure 1-3). A
music player is a feature; adjusting the volume is a microinteraction inside that feature.

Microinteractions are good for:

o Accomplishing a single task

« Connecting devices together

o Interacting with a single piece of data, such as a stock price or the temperature
« Controlling an ongoing process, such as changing the TV channel

o Adjusting a setting

 Viewing or creating a small piece of content, like a status message

o Turning a feature or function on or off

B2 people like this.
Diogo Belém Take a picture
3 minutes ago - Like
I;: "I'| Tiago Lessa casa em londres, casa em madrid... tou a ver g

pé ano vou poupar bastante em alojamento internacional
haha

See Translation
about a minute ago - Like

Write a comment...

Figure 1-3. When someone posts on your Facebook page in a language that isn’t your
default, Facebook offers to translate. (Courtesy Marina Janeiko and Little Big Details.)

Microinteractions Can Be Big

Microinteractions can be part of a product—or even the entire product itself. Take a
toaster, for example. A toaster does one thing: toasts. It only has one use case: a user
puts item to toast into the toaster and presses start. Toaster toasts. Toast pops up when
done. That’s it. Now, of course, there are variations to this (toasting a bagel instead of
bread), but in general the whole device is powered by a single microinteraction.

Similarly, small apps can be made up of one microinteraction. Thousands of small apps
—desktop and mobile—do one small thing well, whether it's converting measurements
like Convertbot (see Figure 1-4), being a calculator, or showing weather data.

Microinteractions Are Not Features ... But Still Matter | 5

wlll AT&T = 12:11 PM

Kilogram =# Pound

48 kg

105.82191

& 4

Figure 1-4. Tapbot’s Convertbot is an app built around a single microinteraction: con-
verting one value to another.

Microinteractions are frequently the last parts of a product to be designed and devel-
oped, and as such they are often overlooked. But ignoring them is a mistake. The reason
the original (G1) version of Android felt so unpolished was because the microinterac-
tions were clunky, especially in comparison to the iPhone; for example, deleting items
was inconsistently triggered, and in some applications pressing the search key did noth-
ing at all. If the microinteractions are poor, the main features, no matter how nicely
done, are surrounded by pain and frustration. The design of your product is only as
good as its smallest part.

Consider that almost all operating systems, be they mobile or desktop, do basically the
same things: install and launch applications, manage files, connect software to hardware,
manage open applications and windows, etc. But the difference between operating sys-
tems—at least from a user’s perspective—are the microinteractions you have with it on
a daily, even hourly, basis (see Figures 1-5 and 1-6).

6 | Chapter 1: Designing Microinteractions

D00 OB 32 = ¢ %@ Sun345PM Q =

Figure 1-5. The author’s menu bar in OS X is crammed full of icons, each of which
launches a microinteraction.

Of course, some features are so useful and/or powerful (or so highly protected by in-
tellectual property laws) that the microinteractions don’t matter as much. Many medical
devices are examples of this, as is most early stage technology, when people are more
amazed something can be done rather than how it's done. For instance, the first gener-
ation of the Roomba (introduced in 2002) couldn’t calculate room size or detect obstacles
and dirt, but it was a novel technology nonetheless, and subsequent models (especially
now that there are competitors on the market) have focused more on the human-robot
microinteractions.

chrome . :m

Submit a Little Big Detail

17th January 2011

W 4notes

& Permalink

4 chrome google osX

Figure 1-6. When trying to find a word on a page, Chrome indicates in the scrollbar
where instances of that word appear. (Courtesy Saul Cozens and Little Big Details.)

In competitive markets, microinteractions are even more important. When there is
feature parity, it is the experience using the product that increases adoption and brand
loyalty. The overall experience of a product relies heavily on its microinteractions. They
are the “feel” in look-and-feel. One reason Google+ fell so flat against Facebook was that
its microinteractions, such as sorting users into circles, while initially intriguing, quickly
became tiresome and gimmicky.

Another reason to pay attention to microinteractions is because they fit so well into our
multiplatform existence. Microinteractions are the glue that can tie together features
across mobile devices, TV, desktop and laptop computers, appliances, and the Web.
While the microinteractions could vary by platform, their small size allows for a con-
sistency that you might not have with large features. In particular, appliances and mobile

Microinteractions Are Not Features ... But Still Matter | 7

devices with their small (or no) screens seem custom-made for microinteractions. Small
interactions work well on small devices.

Take Twitter for example. Twitter is built entirely around a single microinteraction:
sending a <140-character message. Users can do this from practically any device, any-
where. Some objects even tweet independently, or for us. Twitter can be used to send
gossip or messages to coordinate a revolution. Well-designed microinteractions can
scale well across platforms and to millions of users (see Figure 1-7).

and we'll get back to you real
sure you get our response. Office hours

Maonday through Friday
9am-Tpm Eastern Time

Right now it is 5:40pm at the office.

Figure 1-7. A nice piece of microcopy. When you go to ask for support at Harvest, it
shows the time at their office alongside their office hours. (Courtesy Nicolas Bouliane.)

Microinteractions also fit well into our already crowded, overcomplicated, and frag-
mented lives. We need and even enjoy the fast glance at data, the rapid check-in at a
restaurant, the casual review of messages on the subway. (The “Casual Games” category
is really a set of stand-alone microinteractions for amusement.)

Microinteractions force designers to work simply, to focus on details. They challenge
designers to see how lightweight they can design, to reduce complexity and streamline
features that could otherwise be burdensome (Figure 1-8).

wan an e A i || |
[~ T = sl | i =] =]2

OO o= i -] -

Figure 1-8. In Microsoft Office, when text is rotated, relevant styling buttons are rota-
ted as well. (Courtesy Little Big Details.)

8 | Chapter 1: Designing Microinteractions

The Secret History of Microinteractions

In 1974, a young engineer named Larry Tesler began working on an application called
Gypsy for the Xerox Alto computer. Gypsy was one of the first word-processing appli-
cations ever, and the successor to the groundbreaking Bravo, the first true WYSIWYG
word-processing program and the first program that could have the ability to change
fonts. Even though it was still a word-processing program, Gypsy was a different kind
of application altogether: it made use of a mouse and a graphical user interface (GUI).
Larry’s mission—and what would become his rallying cry for decades to come—was to
reduce the modality of the interface, so that users wouldn't have to switch to a separate
mode to perform actions. (His website is http://www.nomodes.com, his Twitter handle
is @nomodes, and even his license plate reads NOMODES.) Larry wanted users, when
they typed a character key, to always have that character appear onscreen as text—not
an unreasonable expectation for a word-processing application. This wasn’t the case in
Bravo: typing only worked in a particular mode; other times it triggered a function.

One of those functions was moving text from one part of the document to another. In
Bravo (see Figure 1-9), users had to first select the destination, then press the “I” or “R”
keys to enter Insert or Replace modes, then find and select the text to move, then finally
press the Escape key to execute the copy.’ Larry knew there was a better way to perform
this action, so he designed one that not only made use of the mouse, but radically
simplified this microinteraction. In Gypsy, the user could select a piece of text, press the
“Copy” function key, then select the destination, and finally press the “Paste” function
key. No mode required. And thus, cut and paste was born.

The intertwined history of interaction design and human-computer interaction is really
the history of microinteractions. The tiny things we unthinkingly interact with every
day on desktops, laptops, and mobile devices were once novel microinteractions: ev-
erything from saving a document to organizing files into folders to connecting to a WiFi
network were all microinteractions that needed to be designed. Even “basics” like scroll-
ing and opening multiple windows needed to be designed and engineered. The forward
march of technology has provided a continuous need for new microinteractions. We
use them unquestioningly now, and only really pay attention to them when someone
designs a better way, or the technology changes and allows for or forces a new way of
performing the microinteraction.

3. Detailed in Bravo Course Outline by Suzan Jerome, published by Xerox, 1976.

The Secret History of Microinteractions | 9

Figure 1-9. A “screenshot” (Polaroid[!]) of Bravo. The bottom window is being used to
make a form in the top window. (Courtesy DigiBarn Computer Museum.)

Indeed, as technologies have changed, the microinteractions that support them have
also changed. Take scrolling, for instance. Bravo had a primitive version of scrolling,
but scrolling really became more refined when Alan Kay, Adele Goldberg, and Dan
Ingalls introduced scrollbars in another Xerox PARC product, SmallTalk, sometime
between 1973 and 1976. SmallTalk’s scrolling could be smooth, pixel-by-pixel, instead
of line-by-line. (This was famously one of the UI elements demoed to Steve Jobs and

10 | Chapter 1: Designing Microinteractions

his engineers, which they then built into Apple’s Lisa (Figure 1-10)—and subsequently
the Macintosh.)*

As documents got longer, scrollbars added arrows to jump to the end without scrolling.
Tooltip-style indicators would appear to indicate where you were in the document. But
the real change came with touchscreen technology on trackpads and mobile devices.
Do you slide up or down to scroll down? Apple famously changed directions (from
down to up) in OS X Lion after the introduction of its iPhones in order to align its
laptops and mobile devices to “natural scrolling.” [See, for example, “Apple’s Mousetrap:
Why did Apple reverse the way we scroll up and down?” by Michael Agger in Slate.]
Apple has also (to the ire of many) hidden scrollbars except when scrolling is in process
or the cursor nears the right edge of a scrollable window. The microinteraction keeps
evolving.

res _File/Print _Edit Type Style Format I Page Layout Search Speling* b
T S Find Next Misspelling
s Sutjgest Correctivngy g 4a.
D E i Paste Guess
Paper Tools Clock Calcutator
- Put in Dictionary %D
= =
ENQIA01 Defn Rep =) Remove From Dictionary
= Write Dictionary to Document
T ENGLISH 301 K| OVERVIEW Clear Dictionary
Engl/301 Defn Rep - Mem & CON%NQ?I ust) : '
Engl/301 FS Outline | SomPuter” (Wil -2 | 3-5 | 7-10
(Smith et al., Dyo 4t
B Engl/301 Job Letter & T
Engl/30
Engl/30)
EngL/30 Date: 13 February 1987 3
Engl/30 :
Engl/30 0. Mr. John Smith
£ Vice of Systems Development 15
: XYZ Computer, Inc. >
Clock I)=
10:29 pm 04/17/87 = ”i_m i 7
enaLIsH 201 oISl M praferances wastenasket BEEE M ciipnoard i winger A

Figure 1-10. Apple’s Lisa (1982) featured dozens of “new” (for the market) microinter-
actions. (Source: Lisa Graphical User Interface Gallery Guidebook.)

4. Asrecounted in Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age by Michael A. Hiltzik
(HarperBusiness, 2005).

The Secret History of Microinteractions | 11

But it’s not just digital products that have microinteractions; a case can be made that
microinteractions originated with the first electric devices, such as the radio (1893), the
flashlight (1986), and the washing machine (1900). As designer Bill DeRouchey points
out in his talk “The History of The Button,” in the (pre-electric) mechanical era, users
could follow their actions directly from the control to the output. You could pull a lever,
watch the gears move and finally see the wheels turn. It was easy to connect the input
to the output. Electricity changed all that. You could press a button on the wall and
nearly instantly a light on the other side of the room turned on. Sure, the feedback was
instant, but the method of execution was not. As DeRouchey says in “The History of
the Button”, “The button meant for the first time the result of the human motion could
be completely different from the motion [it creates] itself” Action became abstracted.

In the digital age, particularly before the GUI, action became even more abstract. In-
serting a stack of punchcards or flipping a series of switches produced output that was
equally obtuse. For a time, the GUI cleared up and simplified microinteractions. But
then Moore’s Law (processor speed doubles every 18 months), Koomey’s Law (power
consumption for hardware decreases 50% every 18 months), Kryder’s Law (exponential
increase in storage space), and increasing bandwidth and network connectivity (LANs
first, then wireless networks, both local and mobile) created the need for more micro-
interactions, and those microinteractions needed to control actions far more abstract
than turning on a light. Just as one example, syncing data across devices is a conceptually
abstract idea, for which there’s no readily available physical analog.

Input methods are also drastically changing microinteractions. Not only do we have
physical controls like buttons, switches, keyboards, and mice, we also have touchscreens,
sensors, voice, and gestural means of triggering microinteractions. In the not-too-
distant past, the only way to interact with the physical environment was to adjust it
manually via a physical control. This changed in 1956 when Robert Adler invented the
Zenith Space Commander, the first TV remote control (Figure 1-11). For the first time,
users could control an object from a distance, invisibly.

Today, to trigger a microinteraction, you don’t even need to be in the same room. With
the right equipment, you can adjust the temperature in your house from the other side
of the world (see Figure 1-12). Or you only need to be in the right location; just by being
in a certain block, your mobile phone can remind you of a to-do item, or your GPS
device can tell you where to turn left. In public restrooms, you can turn on sinks just
by putting your hands into them. You can tell your phone to find you a nearby restaurant,
or flick your finger down a touchscreen list to reveal a search bar, or tap your phone on
a counter to pay for your coffee. The list goes on.

The history of technology is also the secret history of the microinteractions that, like
symbiotic organisms, live alongside them to frame, manage, and control them.

12 | Chapter 1: Designing Microinteractions

Figure 1-11. Although there had been remote-control planes and boats previously
(mostly for military use), the Space Commander television remote removed proximity
from control for consumers. (Courtesy Peter Ha.)

nest

IN 20 MIN

£

Figure 1-12. The Nest Learning Thermostat uses proximity sensors to know when some-
one walks into the room, then lights up and shows the temperature in a way that’s visi-
ble at a glance from across the room. No touching required. (Courtesy of Nest.)

The Secret History of Microinteractions | 13

The Structure of Microinteractions

What makes effective microinteractions is not only their contained size, but also their
form. A beautifully crafted microinteraction gracefully handles four different parts,
which will be described next (see Figure 1-13).

©-9 A0

TRIGGER RULES FEEDBACK LOOPS & MODES

Figure 1-13. The structure of microinteractions.

These four parts—the trigger that initiates the microinteraction, the rules that determine
how the microinteraction works, the feedback that illuminates the rules, and loops and
modes, the meta rules that affect the microinteraction—are a way to design and dissect
microinteractions.

The first part of any microinteraction is the trigger. With turning off the ringer on an
iPhone, the trigger is user-initiated, meaning that the user has to do something—in this
case, flip a switch—to begin the microinteraction. Thus, many microinteractions begin
with an understanding of user need: what the user wants to accomplish, when they want
to do it, and how often. This determines the affordances, accessibility, and persistence
of the trigger. In our silencing-the-phone example, turning off the ringer is a very com-
mon action that users want to perform all the time, rapidly. Thus the trigger (the Ringer/
Silent switch) is available all the time, instantly able to be turned on and off no matter
what application is running. It was so important, it'’s one of only five physical controls
on the iPhone. Controls—digital and/or physical—are the most important part of user-
initiated triggers. They provide not only the ability to engage with a microinteraction
(and sometimes the ability to adjust it while in progress), but also usually the visual
affordance that the microinteraction is even there (see Figure 1-14). If there were no
ringer on/oft switch on the iPhone, you might expect the phone had that functionality,
but have to guess at where to find it. In many older mobile phones (and even in some
phones still), silencing the phone was buried under several layers of a settings menu.
Even for users who knew where the setting was, it took as much as 10 seconds to turn
the ringer on or off. It takes less than a second to flip the physical Ringer/Silent switch.

Of course, the physical control doesn't have to be a switch either. Although the best
designs feel inevitable, there is almost nothing designed that could not be designed
differently. On Windows Phones, the trigger is a pressable rocker button (which also
controls volume) that, when pressed, presents users with a screen overlay that lets users
choose ringer status as “vibrate” or “ring + vibrate”

14 | Chapter 1: Designing Microinteractions

02:29

Thursday 8 March

Figure 1-14. An example of a trigger. In iOS (as in Windows Mobile), you can use the
camera even on a locked phone. Pressing the camera icon bounces the bottom bar up a
little, indicating that you swipe up to get the camera functionality. Of course, slide to
unlock is its own trigger as well.

But triggers need not be user-initiated. Increasingly, triggers are system-initiated—
when the device or application itself detects that certain conditions have been met and
begins a microinteraction. The triggering condition could be anything from detecting
that a new email arrived, to the time of day, to the price of a particular stock, to the
location of the user in the world. For silencing the phone, one could easily imagine that
function integrating with your calendar, so that it automatically silences the phone
whenever you're in a meeting. Or by knowing your location, it automatically goes silent
whenever you're in a movie theater or symphony hall. As our applications and devices
become more sensor-full and context-aware, the more ability they could have to make
decisions on their own about how they operate.

The Structure of Microinteractions | 15

Triggers are covered in Chapter 2.

Understandably, users may want, if not the ability to adjust these system-initiated trig-
gers, then at least the understanding of how they operate, just as Patron X probably
would have liked to know how silencing his phone worked. In other words, they want
to know the rules of the microinteraction.

Once a microinteraction has been initiated, it engages a sequence of behavior. In other
words: something happens (see Figure 1-15). This usually means turning some piece of
functionality or interactivity on, but it might just show the current state of the applica-
tion or device. It might use data to guess what the user wants to do. In whatever case, it
turns on at least one rule, and rules can usually be defined by a designer.

Figure 1-15. An example of a rule. When you’re using the music-streaming service Spo-
tify and then turn it on on another platform, the first instance of Spotify pauses. If you
resume playing on the first instance, the second platform will pause. This creates a very
frictionless, cross-platform service. (Courtesy Sebastian Hall.)

Take what is probably the simplest microinteraction there is: turning on a light. Once
you use the trigger (a light switch), the light turns on. In a basic light setup, there is a
single rule: the light stays on and fully lit until the switch is turned off. You can change

16 | Chapter 1: Designing Microinteractions

that rule, however, by adding a dimmer or a motion detector that turns the light off
when no motion is detected. But the basic turn on switch/turn on light rule is very
simple, and one that becomes apparent to anyone who uses a light, even a child.

With applications or electro-digital devices, the rules can be much, much more nuanced
and hard to understand, even for small microinteractions. In the case of Patron X, it
was the interaction with silencing the phone that caused the symphony incident, because
unless there is a specific piece of feedback (and we’ll get to that next), rules are themselves
invisible. Unlike the mechanical devices of the 19" century, users generally cannot see
the activity the trigger has initiated. (This “feature” has been used to tremendous effect
by hackers, whose victims launch a program that unbeknownst to them installs a virus
onto their computers.)

W S
Rules are covered in Chapter 3.

Everything we see or hear while using digital devices is an abstraction. Very few of us
really know what’s happening when we use any kind of software or device. Just as ex-
amples, you're not really putting a “file” into a “folder” and “email” isn't really arriving
into your “inbox.” Those are all metaphors that allow us to understand the interactions
that are going on. Anything you see, hear, or feel that helps you to understand the rules
of the system is feedback, the third part of microinteractions.

Feedback can take many forms: visual, aural, haptic (vibrations). Sometimes it can be
prominent and unmistakable, like the light bulb glowing when you flip the switch.
Sometimes it can be subtle and ambient, like the unread badges that appear on email
applications and mobile apps. It can be as descriptive as a voice telling you exactly where
to turn while doing turn-by-turn directions, or it can be as ambiguous as an LED light
blinking in a complicated pattern. It can be as disruptive as the fart-like buzz of your
phone in your pocket announcing a message, or a whisper as a digital panel opens. What
is important is to match feedback to the action, to convey information in the most
appropriate channel possible.

In our turning off the ringer on the iPhone example, silencing the phone has two pieces
of feedback: a screen overlay when the switch is turned on or off, and a tiny, visible strip
of orange on the actual switch when the phone is silent. What doesn’t appear—and what
was the downfall of Patron X—is any indication that even though the ringer is off, set
alarms will still sound. There is also no onscreen indicator (other than the temporary
overlay, which vanishes after a few seconds) that the ringer is off. These are design
choices.

The Structure of Microinteractions | 17

Even more than with triggers, feedback is the place to express the personality of the
product. Indeed, feedback could be said, along with the overall form, to completely
define the product’s personality.

Feedback is not only graphics, sounds, and vibrations; it’s also animation (see
Figure 1-16). How does a microinteraction appear and disappear? What happens when
an item moves: how fast does it go? Does the direction it moves in matter?

Process My Order!
p
L Process My Order!
& Process My Order!
p
L Process My Order!
(Done! Process my Order!)

Figure 1-16. An example of feedback. In Coda2, the Process My Order button becomes
a progress bar when pressed. The text should change to Processing Order and Order
Processed!, however. (Courtesy Christophe Hermann and Little Big Details.)

Feedback can have its own rules as well, such as when to appear, how to change colors,
how to rotate the screen when the user turns a tablet on its side. These rules may them-
selves become their own microinteractions, as users might want to adjust them manually
as a setting.

Feedback is discussed in Chapter 4.

The last part of microinteractions are the loops and modes that make up its meta rules.
What happens over time with the microinteraction: do the interactions remain until
manually turned off (as is the case with the Ringer/Silence switch) or do they expire
after a while? What happens during an interruption or when conditions change? See
Figure 1-17 for an example.

18 | Chapter 1: Designing Microinteractions

Although it’s often undesirable, some microinteractions have different modes. For in-
stance, take the example of a weather app. Its main (default) mode is all about displaying
the weather. But perhaps users have to enter another mode to enter the locations they’d
like weather data from.

Item

e New other (see details)
condition:

Quantity: T3y 5 available / 60 sold

Add to Watch list |v|

Figure 1-17. An example of a loop. On eBay, if you’ve bought the same item in the past,
the button changes from “Buy it now” to “Buy another.” (Courtesy Jason Seney and Lit-
tle Big Details.)

Loops and modes are discussed in Chapter 5.

Microinteractions as a Philosophy

There are three ways of incorporating microinteractions into products. The first is to
think about them on a case-by-case basis. During the course of a design project or when
simply refining your product, try to identify any possible microinteractions. Make a list
of them, then treat each as such. For each one, deliberately consider the structure as
outlined in this book, and see if you can polish each individual component. You'll wind
up with elegant microinteractions—and possibly Signature Moments.

Signature Moments are those microinteractions that are product differentiators. A cus-
tom trigger control (such as the original iPod’s scroll wheel) or an elegant “loading”
animation or a catchy sound (“You've Got Mail!”) can be marketed as though they are
features and used cross-platform or in other products by the same organization. A
Signature Moment will help create customer loyalty and recognition. The Like button
on Facebook is now so well known that it’s part of the brand.

The challenge in working this way is keeping the scope of the microinteraction limited.
The tendency is to turn them into features, because that is the way most designers are
used to working. We want to tackle big problems and solve everything. Microinterac-
tions are an exercise in restraint, in doing as much as possible with as little as possible.

Microinteractions as a Philosophy | 19

Embrace the constraints and focus your attention on doing one thing well. Mies van
der Rohe’s mantra of “less is more” should be the microinteraction designer’s mantra as
well.

A second way to think about microinteractions is to reduce more complex applications
to individual products that are each built around one microinteraction. This is micro-
interactions as product strategy: your product does one thing and one thing well. Reduce
the product to its essence, its Buddha nature. If you find you want to add another feature
to your product, that other feature should be its own product. Many appliances, apps,
and devices, including the original iPod, follow this model. This is how many startups
work (or atleast began), from Instagram to Nest: they did one thing well. The “minimum
viable product” can be one microinteraction. Working this way justifies and provokes
a radical simplicity to your product, which allows you to say no to feature requests as
they arise. Of course, this is also a difficult stance to take, particularly in corporations
where the inclination is to sell one product that does everything their customers might
need. Imagine breaking up Microsoft Word into individual products! And yet this is
what some competitors have done. For example, apps like WriteApp are optimized just
for writing, with most of the functionality of a word-processing program stripped away,
so that the focus is only on writing, for writers. Evernote began with a simple microin-
teraction: write notes that are available across platforms.

But there is a third way to think about microinteractions, and that is that most complex
digital products, broken down, are made up of dozens, if not hundreds, of microinter-
actions. You can view a product as the result of all these microinteractions working in
harmony. This is what Charles Eames meant when he said the details are the design.
Everything’s a detail, everything’s a microinteraction: a chance to delight, a chance to
exceed users expectations. As Dieter Rams said:

I have always had a soft spot in my heart for the details. I consider details more important
than a great draft. Nothing works without details. Details are the essentials. The standard
to measure quality by.’

In short, treat every piece of functionality—the entire product—as a set of microinter-
actions. The beauty of designing products this way is that it mirrors the smaller, more
agile way of working that many companies are embracing (Figure 1-18). Of course, the
pitfall is that you can get lost in the microinteractions and not see the big picture, that
all the details won't fit together into a coherent whole when you're finished. And working
this way takes extra time and effort.

5. Dieter Rams in conversation with Rido Busse (1980), reprinted in Design: Dieter Rams & (1981).

20 | Chapter 1: Designing Microinteractions

g = - o
Seorga & ¥ &7 S
SMande; ot & i
Trocsdérn@ L a“w
Esplanade i
du Tracadéro &
Cimetiers *
de Passy g Jardins du ‘@s Musée du
& Trocadéro Quiai Branty ==
F-3 “
& O %
;F 4 & %, 3
o @ -
& : s
BdOeW'gf g’.g' & @ o Oy £ % auvp-
3 G b S o e % Classroon
5 i 5 AL
& L
Qé\ " 4)% =
g & G k]
assy@ & oy
¥ &
% % %
e o | 3
i
- k- oy o,{.q %o

Figure 1-18. Whether viewing the Standard (“Plain”) or Satellite view of Google Maps,
the widget for changing the view shows the map and a preview of the other view behind
it. (Courtesy Hugo Bouquard and Little Big Details.)

This is also a difficult way for agencies—with their notoriously fast project schedules—
to work. It’s honestly a challenging way for any designer to work, as often the attention
of clients and stakeholders is focused on the big features, not the small details that would
enhance those features or improve the overall experience. Indeed, it can be difficult to
get enough time to focus on microinteractions at all. Convincing business and devel-
opment team members that microinteractions are worth spending time on can be a
challenge. It will likely mean extra time for design and development, after all. But it’s
worth it.

The disastrous story of Patron X reminds us that microinteractions matter, that the
designer’s job is to take the tasks that could otherwise be frustrating and difficult and
make them otherwise. Larry Tesler knew this when he decided there had to be a better
way to move text inside a document, and thus cut and paste were born. Microinterac-
tions can improve the world, one tiny piece at a time. And they all start with a trigger.

Microinteractions as a Philosophy | 21

Summary

Microinteractions are the small pieces of functionality that are all around us. Focusing
on them is the way to create a superior user experience.

The history of microinteractions stretches back to the first electric devices. Most of the
digital standards we're used to now were once novel microinteractions.

A microinteraction is made up of four parts: triggers that initiates it, rules that determine
how it functions, feedback that the rules generate, and the loops and modes that make
up its meta-rules.

There are three ways of working with microinteractions: look for them and focus on
each individually, reduce a complicated feature to a core microinteraction, or treat every
feature as a set of linked microinteraction.

22 | Chapter 1: Designing Microinteractions

O’Reilly Ebooks—Your bookshelf on your devices!

=

Python

PDF ePub Mobi APK DAISY

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY —that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
iBookstore, the Android Marketplace, and Amazon.com.

Spreading the knowledge of innovators

http://oreilly.com/store/index.html
http://oreilly.com/ebooks/
http://www.android.com/market/
http://amazon.com
http://www.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	What Is This Book About?
	Who Should Read This Book
	How This Book Is Organized
	Why Write a Book About Microinteractions?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Designing Microinteractions
	Microinteractions Are Not Features ... But Still Matter
	Microinteractions Can Be Big

	The Secret History of Microinteractions
	The Structure of Microinteractions
	Microinteractions as a Philosophy
	Summary

	Chapter 2. Triggers
	Manual Triggers
	Bring the Data Forward
	The Components of a Trigger

	System Triggers
	System Trigger Rules

	Summary

	Chapter 3. Rules
	Designing Rules
	Generating Rules
	Verbs and Nouns
	Screens and States
	Constraints
	Don’t Start from Zero
	Absorb Complexity

	Limited Options and Smart Defaults
	Controls and User Input
	Preventing Errors

	Microcopy
	Algorithms
	Summary

	Chapter 4. Feedback
	Feedback Illuminates the Rules
	Feedback Is for Humans
	Less Is More

	Feedback as a Personality-Delivery Mechanism
	Feedback Methods
	Visual
	Audio
	Haptics

	Feedback Rules
	Summary

	Chapter 5. Loops and Modes
	Modes
	Spring-Loaded and One-off Modes

	Loops
	Styles of Loops
	Long Loops

	Summary

	Chapter 6. Putting It All Together
	Example 1: Mobile App
	Example 2: Online Shared Playlist
	Example 3: Dishwasher Control Panel
	Prototyping and Documenting Microinteractions
	Orchestrating Microinteractions
	Turning Microinteractions into Features
	How to Fix a Dull Microinteraction

	Think Small

	Appendix A. Testing Microinteractions
	What to Look for During Testing
	Using Quantitative Data
	A Process for Testing Microinteractions

	Index
	About the Author

