
UNCORRECTED PROOF

 1

Table of Contents

Table of Contents

Preface

Chapter 1: Designing Microinteractions

The Secret History of Microinteractions

The Structure of Microinteractions

Microinteractions as a Philosophy

Chapter 2: Triggers

Manual Triggers

System Triggers

Chapter 3: Rules

Initiation and Use of Data

Controls

Crafting Rules

States and Microstates

Exceptions, Variations, and Edge Cases

Designing Algorithms

 Preventing Errors

Chapter 4: Feedback

On Personality

Visual Cues

Sound

UNCORRECTED PROOF

 2

Animation

Haptics

Visualizing Constraints

Feedback Rules

Chapter 5: Loops and Modes

Loops

Modes

Chapter 6: Validating Microinteractions

Test Plans

Testing

Revising

Chapter 7: Microinteractions as Products

Apps

Devices

Acknowledgements

Photo Credits

Index

UNCORRECTED PROOF

 3

Preface

Over the last decade, designers have been encouraged to think big, to solve “wicked
problems,” to use “design thinking” to tackle massive, systemic issues in business and in
government. No problem is too large to not apply the tools of design to, and design
engagements can involve everything from organizational restructuring to urban planning.

The results of this refocusing of design efforts are unclear. But by working at such a
macro scale, an important part of design is often lost: the details that delight. Products
that we love show an attention to detail: the beautiful curve, the satisfying click, the
understandable mental model.

This is another way to work: not through grand, top-down design projects, but from the
bottom up, by crafting—lovingly, with care—small things. This is something designers
can do quite well, with immediate, tangible results. This is another way to change the
world: by making seemingly inconsequential moments into instances of pleasure.

There is a joy in tiny things that are beautiful and work well. This joy is both on the part
of the user and in the creator, even though it certainly takes skill, time, and thought to
make it so. It’s hard work, and as admirable in its own way as tackling the Big Problems.
After all, who doesn’t need more joy in their life?

San Francisco

October 2012

UNCORRECTED PROOF

 4

1
Designing Microinteractions

The furious shouting started after the conductor stopped the performance. The New York
Philharmonic had reached the very end of the slow, quiet Adagio movement that finishes
Mahler's Symphony No. 9. The audience, many of whom had paid hundreds of dollars for
this privilege, sat attentive and rapt, listening to the still, sublime moments that resolve
over an hour of music. And then it happened:

From the front row, the unmistakable sound of an iPhone's "Marimba" sound—that high-
pitched xylophone tinkle—going off over and over again. An alarm. It kept going. And
going. The conductor, Alan Gilbert, curtly halted the orchestra. But the alarm kept going
off. By now, audience members were yelling at the phone's owner, an older executive
later dubbed "Patron X" by the Philharmonic, who didn't want to further embarrass the
apologetic man, a long-time symphony patron. Avery Fisher Hall, which just moments
before had been unearthly calm and quiet, was awash in chaos and anger.

As the New York Times reported in January 20121, Patron X had just gotten the iPhone
the day before; his company had replaced his Blackberry for it. Before the performance
began, he had flipped the mute switch, turning silent mode on. But what he didn't know
was that one of the iPhone's rules for mute was that alarms still go off even when the
phone is muted. So when the alarm went off, he didn't even realize it was his phone for

1 Daniel J. Wakin, "Ringing Finally Ended, but There’s No Button to Stop Shame," The New York
Times, January 12, 2012

UNCORRECTED PROOF

 5

an excruciatingly long time. By the time he knew it was his phone and had turned the
alarm off, it was too late: the performance was ruined.

The next day, as news spread, the Internet exploded with vitriol and wisecracks.
Composer Daniel Dorff tweeted, "Changed my ringtone to play #Mahler 9 just in case."
Arguments and discussions spanned across blogs, with some advocating that mute should
turn every sound off. Tech columnist Andy Ihnatko wrote, "My philosophy is 'It’s much
better to be upset with yourself for having done something stupid than to be upset with a
device that made the wrong decision on its own initiative.' "2 While others made the (in
my opinion, correct) case that alarms still need to sound even when the phone is muted.
As Apple pundit John Gruber pointed out, "if the mute switch silenced everything,
there’d be thousands of people oversleeping every single day because they went to bed
the night before unaware that the phone was still in silent mode."3 Apple's own iOS
Human Interface Guidelines gives its rationale for why mute works the way it does:

For example, in a theater users switch their devices to silent to avoid bothering other
people in the theater. In this situation, users still want to be able to use apps on their
devices, but they don’t want to be surprised by sounds they don’t expect or explicitly
request, such as ringtones or new message sounds.
The Ring/Silent (or Silent) switch does not silence sounds that result from user actions
that are solely and explicitly intended to produce sound.4

In other words, mute does not silence the sounds that users have specifically asked for,
only those they have not (e.g. text messages, incoming phone calls, etc.) This is the rule.
Like many rules, it's hidden, and it's compounded by the fact that other than the tiny
orange mark on the switch, there is no onscreen indicator that mute is on. If Apple was to
change to a different rule—that mute silences everything—other rules and feedback
would have to be designed. Would the phone vibrate when an alarm went off? Would
there be some persistent indicator that the phone was in Silent mode, either onscreen
when you woke up the phone or a small LED indicator in the hardware? There are many
different ways mute could be designed.

Mute is an example of a microinteraction. Microinteractions are contained product
moments that revolve around a single use case—they have one main task. Every time you
change a setting, sync your data or devices, set an alarm, pick a password, log in, set a

2 "Daring Fireball: On the Behavior of the iPhone Mute Switch," January 14, 2012
http://ihnatko.com/2012/01/14/daring-fireball-on-the-behavior-of-the-iphone-mute-switch/
3 "On the Behavior of the iPhone Mute Switch," January 13, 2012,
http://daringfireball.net/2012/01/iphone_mute_switch_design
4 Apple iOS Human Interface Guidelines, "Sound"

UNCORRECTED PROOF

 6

status message, or favorite or "like" something, you are engaging with a microinteraction.
They are everywhere: in the devices we carry, the appliances in our house, the apps on
our phones and desktops, even embedded in the environments we live and work in. Most
appliances and some apps are built entirely around one microinteraction (see Chapter 7).

UNCORRECTED PROOF

 7

UNCORRECTED PROOF

 8

Figure 1.1 Tapbot's Convertbot is an app built around a
microinteraction: converting one value to another.

Microinteractions are good for:

• accomplishing a single task

• connecting devices together

• interacting with a single piece of data such as a stock price or the temperature

• controlling an ongoing process such as music volume

• adjusting a setting

• viewing or creating a small piece of content like a status message

• turning a feature or function on or off

The case of Patron X is one of the few examples of a microinteraction making news.
Even though we're surrounded by microinteractions every day, we don't usually notice
them until something goes horribly wrong, as it did for Patron X. But microinteractions
are, despite their small size and near-invisibility, incredibly important. The difference
between a product you love and a product you tolerate is often the microinteractions you
have with it. They can make our lives easier, more fun, and just more interesting if done
well. That's what this book is all about: how to design microinteractions well.

Figure 1-1. When someone posts on your Facebook page in a language that isn’t your
default, Facebook offers to translate.

UNCORRECTED PROOF

 9

Microinteractions are the details of a product, and details, as Charles Eames famously
said5, aren't just the details; they are the design. Details can make make engaging with the
product easier, more pleasurable—even if we don't consciously remember them. Some
microinteractions are practically or literally invisible, and few are the feature that you buy
a product for (although many apps and devices are created around a single
microinteraction; see Chapter 7); instead, they are usually pieces of features, or the
supporting or so-called "hygiene" features. For example, no one buys a mobile phone for
the mute feature, but as we've seen, mute can create all sorts of experiences—for good
and bad.

5 See 100 Quotes by Charles Eames, Eames Office, 2007

UNCORRECTED PROOF

 10

UNCORRECTED PROOF

 11

Figure 1-2. Navigation app Waze knows when I open the app in the late
afternoon, I’m probably driving home and presents this as an option.

Think about it: Almost all operating systems, be they mobile or desktop, do basically the
same things: install and launch applications, manage files, connect software to hardware,
manage open applications/windows, etc. But the difference between operating systems—
at least from a user's perspective—are the microinteractions you have with it on a daily,
even hourly, basis.

Figure 1.2 The author's Menu Bar in OS X is crammed full of icons,
each of which is a Trigger for a microinteraction.

Features ("macrointeractions") are differentiated from microinteractions by their
complexity and the focus it takes to execute them. Macrointeractions are longer in
duration and have more use cases, and thus have more of a cognitive load on the user. In
comparison, microinteractions are shallow, thin, and rapid, sometimes executed so
quickly the user barely barely is aware of it as a distinct entity at all. Macrointeractions
can be made up of many microinteractions put together.

UNCORRECTED PROOF

 12

Figure 1-3. The Disqus sign-up form guesses your name based on your
email address.

Microinteractions are frequently the last parts of a product to be designed and developed,
and as such they are often overlooked. But doing so is a mistake. The reason the original
(G1) version of Android felt so unpolished was because the microinteractions were
clunky, especially in comparison to the iPhone; for example, deleting items was
inconsistently triggered, and in some applications pressing the search key did nothing at
all. If the microinteractions are poor, the main features, no matter how nicely done, are
surrounded by pain and frustration.

Of course, some features are so useful and/or powerful (or so highly-protected by IP) that
the microinteractions don't matter as much. Many medical devices are examples of this,
as is most early-stage technology, when it is more amazing something can be done

UNCORRECTED PROOF

 13

instead of how it’s done. For instance, the first generation of the Roomba (introduced in
2002) couldn’t calculate room size or detect obstacles and dirt, but it was a novel
technology nonetheless, and subsequent models (especially now that there are
competitors on the market) have focused more on the human-robot microinteractions.

The combination of well-designed micro- and macro- (feature) interactions is a powerful
one. This is what Experience Design truly is: paying attention to the details as well as the
big picture so that users have a great experience using the product.

Figure 1-4. When trying to find a word on a page, Chrome indicates in
the scrollbar where instances of that word appear.

In competitive markets, microinteractions are even more important. When there is feature
parity, it is the experience using the product that increases adoption and brand loyalty.
The overall experience of a product relies heavily on its microinteractions. They are the
"feel" in look-and-feel. One reason Google Plus fell so flat against Facebook was that its
microinteractions, such as sorting users into circles, became tiresome and gimmicky.

UNCORRECTED PROOF

 14

Another reason to pay attention to microinteractions is because they fit so well into our
multi-platform existence. Microinteractions are the glue that can tie together features
across mobile, TV, desktop, appliances, and web. While the microinteractions could vary
by platform, their small size allows for a consistency that you might not have with large
features. In particular, appliances and mobile devices with their small (or no) screens
seem custom-made for microinteractions. Small interactions work well on small devices.

Figure 1-5. Twitter’s password form is a great microinteraction, with
very clear feedback.

Take Twitter for example. Twitter is built entirely around a single microinteraction:
sending a <140-character message. Users can do this from practically any device,
anywhere. Some objects even tweet independently, or for us. It can be used to send
gossip or messages to coordinate a revolution. Well-designed microinteractions can scale
well across platforms and to millions of users.

UNCORRECTED PROOF

 15

Figure 1-6. When you go to ask for support at Harvest, it shows the time at their office
alongside their office hours.Microinteractions also fit well into our already-crowded,
overcomplicated, and fragmented lives. We need and even enjoy the fast glance at data,
the rapid check-in at a restaurant, the casual review of messages on the subway. (The
"Casual Games" category is really a set of stand-alone microinteractions for amusement.)

Figure 1-7. In Microsoft Office, when text is rotated, relevant styling
buttons are rotated as well.

Microinteractions force designers to work simply, to focus on details. They challenge
designers to see how lightweight they can design, to reduce complexity and streamline
features that could otherwise be burdensome.

The Secret History of Microinteractions
In 1974, a young engineer named Larry Tesler began working on an application called
Gypsy for the Xerox Alto computer. Gypsy was one of the first word-processing
applications ever, and the successor to the groundbreaking Bravo, the first true
WYSIWYG word-processing program and the first program to have the ability to change
fonts. Even though it was still a word-processing program, Gypsy was a different kind of
application altogether: it made use of a mouse and a graphical user interface (GUI).
Larry's mission (and what would become his rallying cry for decades to come—his
website is nomodes.com, his Twitter handle is @nomodes, and even his license plate

UNCORRECTED PROOF

 16

reads NOMODES6) was to reduce the modality of the interface, so that users wouldn't
have to switch to a separate mode to perform actions. Larry wanted users, when they
typed a character key, to always have that character appear onscreen as text—not an
unreasonable expectation for a word-processing application. This wasn't the case in
Bravo: typing only worked in a particular mode; other times it triggered a function.

6 http://nomodes.com/Larry_Tesler_Consulting/CV_files/NOMODES.jpg

UNCORRECTED PROOF

 17

Figure 1.3 A "screenshot" (Polaroid(!)) of Bravo. The bottom window

is being used to make a form in the top window.

One of those functions was moving text from one part of the document to another. In
Bravo, users had to first select the destination, then press the "I" or "R" keys to enter

UNCORRECTED PROOF

 18

Insert or Replace modes, then find and select the text to move, then finally press the
Escape key to execute the copy7. Larry knew there was a better way to perform this
action, so he designed one that not only made use of the mouse, but radically simplified
this microinteraction. In Gypsy, the user could select a piece of text, press the "Copy"
function key, then select the destination, and finally press the "Paste" function key. No
mode required. And thus, Cut and Paste was born.

The intertwined history of interaction design and human-computer interaction is really
the history of microinteractions. The tiny things we unthinkingly interact with every day
on desktops, laptops, and mobile devices were once novel microinteractions: everything
from saving a document to organizing files into folders to connecting to a wifi network
were all microinteractions that needed to be designed. Even "basics" like scrolling and
opening multiple windows needed to be designed and engineered. The forward march of
technology has provided a continuous need for new microinteractions. We use them
unquestioningly now, and only really pay attention to them when someone designs a
better way, or the technology changes and allows for or forces a new way of performing
the microinteraction.

Indeed, as technologies have changed, the microinteractions that support them have also
changed. Take scrolling, for instance. Bravo had a primitive version of scrolling, but
scrolling really became more refined when Alan Kay, Adele Goldberg, and Dan Ingalls
introduced scrollbars in another Xerox PARC product, SmallTalk, sometime between
1973-1976. SmallTalk's scrolling could be smooth, pixel-by-pixel, instead of line-by-line.
(This was famously one of the UI elements demoed to Steve Jobs and his engineers,
which they then built into Apple's Lisa—and subsequently the Macintosh8.) As
documents got longer, scrollbars added arrows to jump to the end without scrolling.
Tooltip-style indicators would appear to indicate where you were in the document. But
the real change came with touchscreen technology on trackpads and mobile devices. Do
you slide up or down to scroll down? Apple famously changed directions (from down to
up) in OS X Lion after the introduction of its iPhones in order to align its laptops and
mobile devices to “natural scrolling.9” Apple has also (to the ire of many) hidden
scrollbars except when scrolling is in process or the cursor nears the right edge of a
scrollable window. The microinteraction keeps evolving.

7 Detailed in Bravo Course Outline by Suzan Jerome, published by Xerox, 1976.
8 As recounted in Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age by
Michael A. Hiltzik
9 See for example, “Apple’s Mousetrap: Why did Apple reverse the way we scroll up and down?”
by Michael Agger in Slate,
http://www.slate.com/articles/technology/technology/2011/09/apples_mousetrap.html

UNCORRECTED PROOF

 19

Figure 1-8. Apple’s Lisa (1982) featured dozens of “new” (for the
market) microinteractions.

But it's not just digital products that have had microinteractions; a case can be made for
microinteractions to have originated with the first electric devices, such as the radio
(1893), the flashlight (1986), and the washing machine (1900). As designer Bill
DeRouchey points out in his talk The History of The Button, in the (pre-electric)
mechanical era, users could follow their actions directly from the control to the output.
You could pull a lever, watch the gears move, then finally the wheels turn. It was easy to
connect the input to the output. Electricity changed all that. You could press a button on
the wall and nearly instantly a light on the other side of the room turned on. Sure, the
feedback was instant, but the method of execution was not. As DeRouchey says, "The
button meant for the first time the result of the human motion could be completely
different from the motion [it creates] itself." Action became abstracted10.

In the digital age, particularly before the GUI, action became even more abstract.
Inserting a stack of punchcards or flipping a series of switches produced output that was
equally obtuse. For a time, the GUI cleared up and simplified microinteractions. But then
Moore's Law (processor speed doubles every 18 months), Koomey's Law (power
consumption for hardware decreases 50% every 18 months), Kryder's Law (exponential
increase in storage space), and increasing bandwidth and network connectivity (LANs

10 Bill DeRouchey, The History of The Button, http://www.slideshare.net/billder/history-of-the-
button-at-sxsw

UNCORRECTED PROOF

 20

first, then wireless networks, both local and mobile) created the need for more
microinteractions, and the microinteractions needed to control actions far more abstract
than turning on a light. Just as one example, syncing data across devices is a
conceptually-abstract idea, for which there's no readily available physical analog.

Input methods are also drastically changing microinteractions. Not only do we have
physical controls like buttons, switches, keyboards, and mice, we also have touchscreens,
sensors, voice, and gestural means of triggering microinteractions. In the not-too-distant
past, the only way to interact with the physical environment was to adjust it manually via
a physical control. This changed in 1956 when Robert Adler invented the Zenith Space
Command, the first TV remote control. For the first time, users could control an object
from a distance, invisibly.

Figure 1.4 Although there had been remote-control planes and boats
previously (mostly for military use), the Space Commander television

remote removed proximity from control for consumers.

Today, to trigger a microinteraction, you don't even need to be in the same room. With
the right equipment, you can adjust the temperature in your house from the other side of
the world. Or you only need to be in the right location; just by being in a certain block,

UNCORRECTED PROOF

 21

your mobile phone can remind you of a To Do item, or your GPS device can tell you
where to turn left. In public restrooms, you can turn on the sinks just by putting your
hands into them. You can also tell your phone to find you a nearby restaurant, or flick
your finger down a touchscreen list to reveal a search bar or tap your phone on a counter
to pay for your coffee.

Figure 1.5 The Nest Learning Thermostat uses proximity sensors to

know when someone walks into the room, then lights up and shows the
temperature in a way that's glanceable from across the room. No

touching required.

The history of technology is also the secret history of the microinteractions that, like
symbiotic organisms, live alongside them to frame, manage, and control them.

The Structure of Microinteractions
What makes effective microinteractions is not only their contained size, but also their
form. A beautifully-crafted microinteraction pays attention to all four parts of a
microinteraction.

UNCORRECTED PROOF

 22

Figure 1.6 The structure of microinteractions.

The first part of any microinteraction is the Trigger. With mute, the trigger is user-
initiated, meaning that the user has to do something—in this case flip a switch—to begin
the microinteraction. Thus, many microinteractions begin with a understanding of user
need: what the user wants to accomplish, when they want to do that, and how often they
want to do it. This determines the affordances, accessibility, and persistence of the
trigger. In our mute example, mute is a very common action that users want to perform
all the time, rapidly. Thus the trigger (the mute switch) is available all the time, instantly
able to be turned on and off no matter what application is running. It was so important,
it's one of only five physical controls on the iPhone. Controls—digital and/or physical—
are the most important part of user-initiated triggers. They provide not only the ability to
engage with a microinteraction (and sometimes the ability to adjust it while in progress),
but also usually the visual affordance that the microinteraction is even there. If there was
no mute switch on the iPhone, you might expect the phone had that feature, but have to
guess at where to find it. In many older mobile phones (and even in some phones still),
the mute feature was buried under several layers of a settings menu. Even for users who
knew where the feature was, it took as much as 10 seconds to turn mute on or off. It takes
less than a second to flip the physical mute switch.

UNCORRECTED PROOF

 23

UNCORRECTED PROOF

 24

Figure 1.7 An example of a Trigger. In iOS (as in Windows Mobile),
you can use the camera even on a locked phone. Pressing the camera

icon bounces the bottom bar up a little, indicating that you swipe up to
get the camera functionality. Of course, Slide to Unlock is its own

Trigger as well.

Of course, the physical control doesn't have to be a switch either. Although the best
designs feel inevitable, there is almost nothing designed that could not be designed
differently. On Windows Phones, the trigger is a pressable rocker button (which also
controls volume) that, when pressed, presents users with a screen overlay that lets users
choose ringer status as “vibrate” or “ring + vibrate."

But triggers need not be user-initiated. Increasingly, triggers are system-initiated—when
the device or application detects that certain conditions have been met and itself begins a
microinteraction. The triggering condition could be anything from detecting that a new
email has arrived, to the time of day, to the price of a particular stock, to the location the
user is in the world. For mute, one could easily imagine mute integrating with your
calendar, so that it automatically mutes whenever you're in a meeting. Or by knowing
your location, it automatically mutes whenever you're in a movie theater or symphony
hall. As our applications and devices become more sensor-full and context-aware, the
more ability they have to make decisions on their own about how they operate.

Triggers are covered in chapter 2.

Understandably, users may want—if not the ability to adjust these system-initiated
triggers—then at least the understanding of how they operate, just as Patron X probably
would have liked to have known how mute works. In other words, they want to know the
Rules of the microinteraction.

Once a microinteraction has been initiated, it engages a set of rules and behavior of the
microinteraction. In other words: something happens. This usually means turning a
feature or a set of features on, but it might show the current state of the application or
device. It might use data to guess what the user wants to do. In whatever case, it turns on
(at least one) rule, and those rules can usually be defined by a designer.

UNCORRECTED PROOF

 25

Figure 1.8 An example of a Rule. When you're using the music-

streaming service Spotify and then turn it on on another platform, the
first instance of Spotify pauses. If you resume playing on the first

instance, the second platform will pause. This creates a very
frictionless, cross-platform service.

UNCORRECTED PROOF

 26

Take what is probably the simplest microinteraction there is: turning on a light. Once you
use the trigger (a light switch), the light turns on. In a basic light set up, there is a single
rule: the light stays on and fully lit until the switch is turned off. You can change that
rule, however, by adding a dimmer or a motion-detector that turns the light off when no
motion is detected. But the basic turn on switch/turn on light rule is very simple rule, and
one that becomes apparent to anyone who uses a light, even a child.

With applications or electro-digital devices, the interactions can be much, much more
nuanced and hard to understand, even for small microinteractions. In the case of Patron
X, it was the interaction with mute that caused the symphony incident, because unless
there is a specific piece of feedback (and we'll get to that next), interactions are
themselves invisible. Unlike the mechanical devices of the 19th century, users generally
cannot see the activity the trigger has initiated. (This "feature" has been used to
tremendous effect by hackers, whose victims launch a program that unbeknownst to them
installs a virus onto their computers.)

Rules are covered in chapter 3.

Everything we see or hear while using digital devices is an abstraction. Very few of us
really know what's happening when we use any kind of software or device. Just as
examples, you're not really putting a "file" into a "folder" and "email" isn't really arriving
into your "inbox." Those are all metaphors that allow us to understand the interactions
that are going on. Anything you see, hear, or feel that helps you to understand the rules of
the system is Feedback, the third part of microinteractions.

Feedback can take many forms: visual, aural, haptic. Sometimes the feedback can be
prominent and unmistakable, like the lightbulb glowing when you flip the On switch.
Sometimes it can be subtle and ambient, like the unread badges that appear on email
applications and mobile apps. It can be as descriptive as a voice telling you exactly where
to turn while doing turn-by-turn directions, or it can be as ambiguous as a LED light
blinking in a complicated pattern. It can be as disruptive as the fart-like buzz of your
phone in your pocket announcing a message, or a whisper as a digital panel opens. What
is important is to match the feedback to the action, to convey information in the most
appropriate channel possible.

In our iPhone mute example, mute has three pieces of feedback: a screen overlay when
the mute button is turned on or off, and a tiny, visible strip of orange on the actual switch

UNCORRECTED PROOF

 27

when mute is on. What doesn't appear—and what was the downfall of Patron X—is any
indication that even though mute is on, set alarms will sound. There is also no onscreen
indicator (other than the temporary overlay which vanishes after a few seconds) that mute
is on. These are design choices.

Even more so than triggers, feedback is the place to express the personality of the
product. Indeed, the feedback from microinteractions could be said, along with the
overall form, to completely define its personality.

Figure 1.9 An example of Feedback. In Coda2, the Process My Order

button becomes a progress bar when pressed.

Feedback is not only graphics, sounds, and vibrations; it's also animation and transitions.
How does a microinteraction appear and disappear? What happens when an item moves:
how fast does it go? Does the direction it moves in matter?

Like interactions (which are mostly rules) feedback can have its own rules as well, such
as when to appear, how to change colors, how to rotate the screen when the user turns the

UNCORRECTED PROOF

 28

tablet on its side. These rules may themselves become their own microinteractions, as
users might want to adjust them manually.

Feedback is discussed in chapter 4.

The last part of microinteractions are the Loops and Modes that make up its meta rules.
What happens over time with the microinteraction: do the interactions remain until
manually turned off (as is the case with the mute switch) or do they expire after a while?
What happens during an interruption or when conditions change?

Although it's often undesirable, some microinteractions have different modes. For
instance, take the example of a weather app. It's main (default) mode is all about
displaying the weather. But perhaps users have to enter another mode to enter the
locations you'd like weather data from.

Figure 1.10 And example of a Loop. On eBay, if you've bought the

same item in the past, the button changes from "Buy it now" to "Buy
another."

Loops and Modes are discussed in chapter 5.

UNCORRECTED PROOF

 29

Microinteractions as a Philosophy

There are two ways of working with microinteractions. One is to think about them on a
case-by-case basis. When, during the course of design project, try to identify any possible
microinteractions. Make a list of them, then treat each as such. For each one, deliberately
consider the structure as outlined in this book, and see if you can polish each individual
component. You'll wind up with elegant microinteractions.

The challenge in working this way is keeping the scope of the microinteraction limited.
The tendency is to turn them into features, because that is the way most designers are
used to working. We want to tackle big problems and Solve Everything.
Microinteractions are an exercise in restraint, in doing as much as possible with as little
as possible. Embrace the constraints and focus your attention on doing one thing well.
Mies van der Rohe's mantra of "Less is more" should be the microinteraction designer's
mantra as well.

Figure 1-9. Even in the hated iCal, there is a nice microinteraction in
the selection of a time. Rather than have you figure out how long it

would be, iCal shows you event duration when selecting the end time.

UNCORRECTED PROOF

 30

A second way to think about microinteractions is to reduce more complex applications to
individual products that are each built around one microinteraction. This is
microinteractions as product strategy: your product does one thing and one thing well.
Reduce the produce to its essence, its Buddha Nature. If you find you want to add another
feature to your product, that other feature should be its own product. Many appliances,
apps, and devices including the original iPod follow this model. This is how many
startups work (or at least began), from Instagram to Nest. The "minimum viable product"
is usually one microinteraction. Working this way justifies and provokes a radical
simplicity to your product, that allows you to say no to feature requests as they arise. Of
course, this is also a difficult stance to take, particularly in corporations where they want
to sell one product that does everything their customers might need. Imagine breaking up
Microsoft Word into individual products! And yet this is what some competitors have
done. For example, apps like WriteApp are optimized just for writing, with most of the
functionality of a word processing program stripped away, so that the focus is only on
writing, for writers. Evernote began with a simple microinteraction: write notes that are
available across platforms.

But there is a third way to think about microinteractions, and that is that many complex
digital products, broken down, are likely made up of dozens, if not hundreds, of
microinteractions. You can view a product as the result of all these microinteractions
working in harmony. This is what Charles Eames meant when he said the details are the
design: everything's a detail, everything's a microinteraction: a chance to delight, a
chance to exceed users' expectations. As Dieter Rams said,

I have always had a soft spot in my heart for the details. I consider details more important
than a great draft. Nothing works without details. Details are the essentials. The standard
to measure quality by11.

In short, treat every piece of functionality—the entire product—as a set of
microinteractions. The beauty of designing products this way is that it mirrors the
smaller, more Agile way of working that many companies are embracing. Of course, the
pitfall is that you can get lost in the microinteractions and not see the big picture, that all
the details won't fit together into a coherent whole when you're finished. And working
this way takes extra time and effort.

11 Dieter Rams in conversation with Rido Busse (1980), reprinted in Design: Dieter Rams & (1981)

UNCORRECTED PROOF

 31

Figure 1-10. Whether in Standard (“Plan”) or Satellite view, the
widget for changing the view shows the map and a preview of the other

view behind it.

This is also a difficult way for agencies—with their notoriously fast project schedules—
to work. It's honestly a difficult way for any designer to work, as often the attention of
clients and stakeholders are focused on the Big Features, not the small details that would

UNCORRECTED PROOF

 32

enhance those features or improve the overall experience. Indeed, it can be difficult to get
enough time to focus on microinteractions at all. Convincing business and development
team members that microinteractions are worth spending time on can be a challenge. It
will likely mean extra time for design and development, after all. But it's worth it.

The disastrous story of Patron X reminds us that microinteractions matter, that the
designer's job is to take the tasks that could otherwise be frustrating and difficult and
make them otherwise. Larry Tesler knew this when he decided there had to be a better
way to move text inside a document and thus Cut and Paste was born. Microinteractions
can improve the world, one tiny piece at a time. And they all start with a Trigger.

Summary
Microinteractions are the small pieces of functionality that are all around us. Focusing on
them is the way to have a superior user experience.

The history of microinteractions stretches back to the first electric devices. Most of the
digital standards we’re used to now were once novel microinteractions.

Microinteractions are made up of four parts: a Trigger that initiates it, the Rules that
determine how it functions, the feedback it generates, and the loops and modes that make
up its the meta-rules.

There are two ways of working with microinteractions: either look for them and focus on
each individually, or else treat every piece of functionality as a microinteraction.

UNCORRECTED PROOF

